If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4q^2-16q+15=0
a = 4; b = -16; c = +15;
Δ = b2-4ac
Δ = -162-4·4·15
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4}{2*4}=\frac{12}{8} =1+1/2 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4}{2*4}=\frac{20}{8} =2+1/2 $
| -17-7m=118 | | 3w*w=588 | | 3y+7y=14 | | X^2+x^2+149=169 | | x/6.5=-1.60 | | 4(x-1)+2×=3×-2 | | x/1.90=3.5 | | 48x²+240x-108000=0 | | 3x-2=4(×-1)+2× | | 5*(12)=x*(4+x) | | 3x-7+8=10x-5 | | 60=4x+x2 | | 4x+159=180 | | d+3-7=10 | | 0.88=18/y | | 45-y=4y | | 12u=6+9u | | 13y-31=70 | | x/2.60=7.5 | | x/1.40=7.5 | | 420=21g | | 342=18y | | x5=8+12 | | -6(x+-3)+7=-5 | | 5x-3=(x+3)+3x | | R+44=5(r-4) | | -9.32x/4=-9.32 | | 5(x+5)-12=28 | | 3n+7+n=5n-9 | | 5(x+5)-12=26 | | -1=p+-1 | | 3c-5c=2 |